

NTHAACHFI

Validation of GANs for High Energy Physics Simulations

AAAI-MLPS 2021 Spring Symposium

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

23.03.2021

Calorimeter Detectors

- Particle physics studies the fundamental properties and interactions of (novel) elementary particles.
- Particles are colliding with highest energy to produce know and novel particles.
- Calorimeter detectors measure the energy of particles produced in the collisions.
- The entering particle produces a cascade of shower particles which are absorbed and detected.

Florian Rehm - Validation of GAN Simulations for HEP

Calorimeter Simulations

- Calorimeter simulations are based on Geant4
- Geant4 use about 50% of the resources of the worldwide LHC grid
- LHC high luminosity phase requires 100 times more simulated data*

- → Develop a new approach which occupies less resources
- → Employ deep learning

*A Roadmap for HEP Software and Computing R&D for the 2020s https://doi.org/10.1007/s41781-018-0018-8

Florian Rehm - Validation of GAN Simulations for HEP

3D Training Data

- Interpretation of the calorimeter outputs as images
- 3D shower image granularity: 25x25x25
- Energies between 2-500 GeV

Generative Adversarial Networks 3DGAN

- Train two networks (Generator & Discriminator) in a minmax game
- GANs reach a good level of accuracy*
- We want to further decrease the computational resources
- Only the generator network is used to generate shower images

*G. R. Khattak, et al., ICMLA 2019 Particle Detector Simulation using Generative Adversarial Networks with Domain Related Constraints

CERN CERN

Florian Rehm - Validation of GAN Simulations for HEP

Old Conv3D Generator Network

• Until now: Representing 3D images \rightarrow Using 3D convolutional layers

Conv3D layers are computational demanding

→ Creating neural network consisting only of Conv2D layers

Paper: Three dimensional Generative Adversarial Networks for fast simulation, Carminati et al., 2018

New Conv2D Generator Network

- Solving a 3D problem with 2D layers
- 1.3x speed up vs Conv3D \rightarrow 8000x speed up vs Monte Carlo
- Increasing the number of parameters → more powerful network
 → higher accuracy

Shower Shapes

• Mean Squared Error (MSE) between GAN and validation data:

Model	MSE (Lower is better)	—
Conv3D	0.065	
Conv2D	0.044 🗸	

Conv2D model performs better

Sampling Fraction

- Ratio between the total measured energy ECAL and the initial particle energy E_p
- Conv2D performs better for energies below 100 GeV

Histogram of Single Cell Energy Deposition

- Conv2D model performs slightly worse for lower energy cells
- \rightarrow Further investigations
- Minimal energy threshold at 10⁻⁶ GeV because of detector resolution

Single Pixel Comparison

We compare the single cell energy distribution for the pixels with larger energy depositions

- 343 pixels
- Energy 250±2 GeV
- 1580 shower images

Model	Mean	STD
Conv3D	0.93	0.86
Conv2D	1.00	0.90

 \rightarrow Conv2D model performs better

Florian Rehm - Validation of GAN Simulations for HEP

11

Physics Evaluation 5 SSIM

Structural Similarity Index

- Known problem of GANs: Mode collapse
- SSIM estimates the perceptual difference between similar images
- \rightarrow Conv2D performes better

- **1.3x** speed up due to transition from Conv3D to Conv2D
- **8000x** speed up of Conv2D vs Monte Carlo

- Both GAN models show high physics accuracy
 - \rightarrow Overall, the Conv2D model better

Validation of GANs for High Energy Physics Simulations

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

